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TASK 3: SPECIAL STUDIES

1 1. INTRODUCTION

- Task 3 was set up with two objectives. The rust was to eablsh interfaces
between Georgia Tech and other pmgman such as LATS. LETS. AHAT and KDEC.
Each of these programs requies specific iteactions and daa exchange with Georgia
Tech. Some of these will eventually requie an inerface specification to define hardware
and software boundaries between Georgia Tech and the other pnrum.

3 The second objective of Task 3 is to esolve issues which wa m antcipated in
the original contact. but which need resolution for the conmct to aove forward These
issues are sometimes quite dfcult and beyond the resourws o( the conwact. However.
each issue is at least defined and evaluated in n ncc. If furher work is justified it is
left open for USASDC assignment.
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2. CONTRACT INTERFACES

Interfaces have been established with all four programs which merge with
Georgia Tech. These are AHAT, LATS, LETS and KDEC. A point of contact has been
established at Georgia Tech for each program. A summary of each follows.

2.1 AHAT

Dr. W.S. Tan is the point of contact for VLSI design and GN&C Processor
issues. Andy Register is the Georgia Tech interface for all AHAT meetings. This
interface is working smoothly. Georgia Tech VLSI design tapes are being delivered to
Harris on a regular basis. Questions that arise are resolved quickly if the information is
at Georgia Tech. The specific interface between the AHAT processor and the Georgia
Tech test facility has not been addressed. Two issues are outstanding. The first is a
programming port for instruction loading and editing. The second is a data port for FPA
pixel information. These two have not been defined to a level suitable for Georgia Tech
to begin an interfacc design. At some point these interfaces will be defined, a
specification will be written and Georgia Tech will begin development of suitable test
devices.

2.2 LATS

The LATS facility will produce FPA pixel data and process it to some level. The
data will be sent from LATS to a PIP over a SCSI link. This data path has been
specified to a degree. The data rates and some of the data elements are known. Andy
Henshaw serves as the interface for Georgia Tech. He has talked with LMSC (PARC)
and is designing a specific interface for the PFP, to receive data over a SCSI port, cluster
and centroid the data, and transit the centroids to the EXOSIM simulation. The interface
is sufficient for 32 x 32 FPAs at frame rates of 100 hz.

A second SCSI port is also provided to transmit data to LATS. This would most
likely be control information from the GN&C Processor. The exact data and data rates
have not been specified. However, one SCSI port should be sufficient for this
command/control channel.

2.3 LETS

Andy Henshaw is the primary interface between Georgia Tech and LETS. His
interface is a SCSI port to transmit data from the PFP to the LETS VAX. Randy Abler is
a secondary interface for LETS. His responsibility is an ETHERNET interfaces between
the SUN PFP host and the LETS ETHERNET. These interfaces present no difficulties
and can be met with standard products.

2.4 KDEC

Georgia Tech has provided PFP programming classes to support KDEC. Two
manuals have been written to assist users in programming the PFP. EXOSIM is being



converted to a parallel format for execution on the PFP. When KDEC has a working

PFP, interface issues on EXOSIM will be directed to Richard Pitts.

2.5 Other

Interfaces with Draper Laboratories, LEAP, GBI, and KHILS are not being
developed. As these entities become important and require special attention, new
interfaces will be developed.

2.6 Working Groups

To support the interfaces and to ensure that all participants have a forum for
presenting requirements, specifications and problems, a set of four working groups (WG)
has been established. Each WG is directed at a specific technology area. The four
groups and their leaders are:

(a) Parallel Simulation Technology Working Group - Tom Collins (404)894-2509.
This group will focus on parallel simulation techniques and tools, simulation
languages, and parallel simulations such as EXOSIM and LEAP.

(b) Seeker/Scene Emulation Technology Working Group - Andrew Henshaw
(404)894-2521. This group will focus on scene generation techniques, seeker
modeling, benchmark test and evaluation data for GN&C processors, and
emulation accuracy assessment.

(c) GN&C Processor Working Grou - Andy Register (404)894-3812. This group
will focus on processor architectures, VLSI design tools, VLSI fabrication,
packaging and benchmarks for processor evaluation and testing.

(d) Parallel Ada Software Working Group - Dr. W.S.. Tan (404) 894-2508. This
group will focus on development tools for embedded Ada software, parallel
implementation techniques, test and evaluation of embedded Ada software, and
benchmark test programs for parallel simulation and GN&C processors.



3. TECHNICAL ISSUES

3.1 Delayed Gamma Model

The rejection of gamma spikes in the signal processor presents a significant
problem. Data rates are required to be quite high (10 khz) which requires a large number
of A/D converters. Processing, although quite simple, requires a large number of chips
to support the high data rate. An effort was made to develop a reasonable model to test
various gamma rejection methods. This work is reported in Volume 5. Ultimately an
analog scheme is preferred since it would eliminate chips and reduce the package size
and weight. It is too early to tell whether analog techniques are sufficient, but the
assumption is being made that they will eventually do the job. In case they do not, a
digital plan is available and can be implemented.

One of the outputs from the investigation was a testing procedure. Georgia Tech
has a preliminary design for a gamma injection circuit which could be used to test signal
processing hardware with digital gamma rejection. Since the input is known, it is
possible to get an exact measure on any gamma rejection hardware. This could prove
useful, but only for digital methods, since analog schemes require a different injection
technique. Nothing further will be pursued in the gamma rejection or testing area unless
the analog technique fails.

3.2 Parallel EXOSIM

A parallel simulation for an EXO-Atmospheric KEW interceptor has been
developed by Coleman Research Corporation. Converting the Fortran code for PFP
execution has been a primary objective of Task 1. The unusual problems encountered by
the Task 1 group and by Dynetics Inc., necessitated additional effort and approaches.
Section 4 is a summary of a conversion methodology developed under Task 3. Section 5
applies the methodology to EXOSIM and discusses the parallel implementation.



4. PARALLEL PROGRAMMING METHODOLOGY

4.1 Introduction

A parallel programming methodology has been developed based on data flow
graphs, and the definition of a primitive language which permits a data flow graph to be
translated into a computational structur. These concepts are discussed in the following
sections and applied to Parallel EXOSIM in Section 5.

4.2 Data Flow Graphs

The objective is to re-create the engineering block diagram from the Fortran code.
Obviously, the original block diagram would be best, but is not available in this case, just
as it isn't for many "Dusty Deck" Fortran programs. However, the code is broken up into
small subroutine segments which is a tremendous aid in recovering the engineering
structure.

The variables which are passed to a Partition are identified and placed on the left
side of the data flow graph. Variables which are passed out of a Partition are identified
and placed on the right side of the flow graph. Computational data flow and time
proceeds from left to right in this graph. As each subroutine call is encountered, it is
entered as a block (to be expanded later) with the input variables on the left and output
variables on the right. In order to construct the graph some operational primitives must
be defined.

4.3. Execution Primitives

4.3.1 Input/Output Primitives

Input and Output Primitives are shown in Table 4.1. Each data flow graph has
input primitives on the left and output primitives on the right. The symbols in Table 4.1
identify the variable by name, type and bit width. The types are floating point 32-bit (R)
or 64-bit (D), integer 16-bit (I) or 32-bit (L) and logical which can have 1 bit up to N bits
where N is a specified parameter. In addition some variables may not fall into any of
these types so a special type (S) is used to identify these unusual cases.

4.3.2 Scalar Primitives

Operations consist of addition, subtraction, multiplication, division, functions,
tables of one variable and tables of two variables. These are defined in Table 4.2. Other
primitives can be added such as Tables of three variables, integration, and specific
nonlinear functions. For example, limiting and deadzone are often given as distinct
primitives and not included within the one variable TABO function. For a coarse grain
computational view this detail is not needed. For further expansion it can be useful.
Note that Table 4.2 is identified as scalar. Since these operations occur so often it is best
to be able to isolate them as a distinct group.



Table Input and Output Variable Definitions & Symbols

DEFINITION INPUT SYMBOL OUTPUT SYMBOL

32-bit Floating
Point Name R Name R

64-bit Floating
Point Name D Name D _

16-bit Integer Name 1 Name I

32-bit Integer N 1

N-bit Boolean
(N is an integer) Name NB- Name NB

N-bit Special Floating
Point or Integer Name NS Name NS
(N is an integer)



TableA. Scalar Execution Primitives

PRIMITIVE SYMBOL ACTION

A C

ADD/SUB B C=A -B

B

MULTIPLY A B C

A C

DIVIDE C = A/B

A - f( ) B B =f.A)

FUNCTION f= sin, cos, tan, sqrt
arcsin, arccos, arctan
exp, log, In, abs

TABLE A - TAB(A) B
ONE VARIABLE B = TAB(A)

A-

TABLE TAB2(A,B) - C C = TAB2(AB)

TWO VARIABLES B

B = JAQ)dt + IC..

INTXX -- INTXX: = INTEU (EULER)
INTTEGRATION A IN1TR (TRAPEZOIDAL)

INTRK (RUNGE KUTTA)

A
AND AA C C=AABB

OR A
OR V V - C C=AvBB-

EXCLUSIVE A V - C C=AvB
OR B_

DECISION TIF (T LE TI) Then A Else B
LE is A Logical

T (LE) T,~DT_- Expression



Note that the summation primitive has a heavy black rectangle on the B input.
This is used to indicate a signal is negated. If the symbol is omitted C = A + B. The
symbol can be used on any input signal line for arithmetic variables. It is not defined for
logical variables (thorough it could be defined as ones complement). The Decision
Primitive is explained in Section 4.3.4.

Conversion depends on the representation. For IEE floating point conversion,
the exponent is 8-bits for F (1 I-bits for D) and the mantissa is 24-bits for F (53-bits for
D). Conversion from F to D uses a zero fill. Conversion from D to F uses truncation or
rounding on the mantissa.

Integers can be converted exactly by putting the integer in fractional form with an
exponent. The integer is already in binary format therefore a shift of the binary point
determines the exponent. A 16-bit integer will convert unchanged into F or D format. A
32-bit integer will be truncated or rounded for F and unchanged for D.

In converting F or D to I or L the F or D number is put in expanded form and the
integer part selected. Truncation or rounding to the nearest integer is used in the
conversion.

Selection of truncation or rounding is a hardware option that is embedded in the
compiler. The user normally does not have a choice. Conversion Primitives are shown
in Table 4.3.

4.3.3 Vector Primitives

A set of vector primitives is given in Table 4.4 These are based on the
definitions:

x k= Vector with k Elements

x(1) - Scalar Value of x k

a,b,c = Scalars

a mxn = Matrix with m Rows and n Columns

TRAN = Transpose of a Matrix or Vector

DOT = Vector Dot Product

CROSS = Vector Cross Product

DET = Determinant of a Matrix

MAX - Maximum Value of a Matrix or Vector



Tab \. Data Type Conversion Primitives

DEFINITION SYMBOL ACTION

Convert Connvert, 32-bit floating point number
FTOD CONFD to 64-bit floating point number

Cinvert Convert 64-bit floating point number to

DToF CONDF 32-bit floating point number

Convert Convert 16-bit integer to 32-bit integer

ITOL CONIL

Convert Convert 32-bit integer to 16-bit integer

LToI CONLI

Convert Convert 16-bit integer (32-bit integer) to

I(L) To F CONI(L)F 32-bit floating point number

Convert rConvert 16-bit (32-bit integer) to 64-bit

1(L) To D CONI(L)D floating point number

Convert
F(D) To I Convert 32-bit (64-bit) floating point

CONF(DI number to 16-bit integer

Convert Convert 32-bit (64-bit) floating point

F(D) To L CON F(D)L number to 32-bit integer



3 TabIl"5. Vector Execution Primitives

U PRIMITIVE SYMBOL OPERATION

3SCALE XkMULVS-y V ;k

'k -

k 23 MAGNITUDE ik ->MAG ?kY k = SW 1:0
1=0

U MNAXIMUM ~ ik MAX -a a = MAX (x (1). x (2). x(k))

g MINIMUM%' ik MIN a a= MIN (x(l).x(2). Xk

TRANSPOSE ik TRA Yk X k

DOT PRODUCT DOT -Zk Z k(XkOT (yk)

-k ->5CROSS PRODUCT Yk -CROSS -z kZ=k kXX

k~x bk=cxkX kXXY

MULTIPLY ba~ xm ko

CIL 7b fvk=(x

nxm ML M v
-mxk MUM
a

CONSTRUCT b-3 VECTOR X CONS yk+3Yk3 {b
Xk' X+ kk

LC



MIN W Minimum Value of a Matrix or Vector

MAG - Magnitude of a Vector

UNIT - Convert Vector to a Unit Vector

SCALE - Scale a Vector or Matrix by a Scalar

CONV = Construct a Vector from Scalar and Vector Parts

These vector primitives permit the code to be reduced to an extremely compact
form. This makes the coarse grain parallelism much mone obvious, the specific
implementation of these vector operations is not disclosed. There are many possible
implementations which take advantage of the inherent parallelism, but this will be
embedded until a fine grain structure is necessary. The next step is to convert the code.
using the primitives, to a concise data flow representation.

4.3.4 Decision Primitive

The Decision Primitive is represented by the symbol shown in Figure 4. 1. The
symbol graphically represents an If-Then-Else program control statement in a data flow
graph. The conditions are

Ti
T

T>T

E

Figure 4.1. Decision Primitive Symbol

given in the top part of the symbol with the decision variables shown on top. If these are
changed by other statements, the data flow graph should indicate this with a data line to
TI or T. If these are constants they should not be shown above the symbol. The '"'
branch is the "Then" exit while the "E" branch is the "Else" exit.

An example of a complex IF-Then-Else structure is shown in Figure 4.2. This
has been converted to the data flow graph shown in Figure 4.3.

A second example is shown in Figure 4.4. This example represents a nested
conditional statement and is implemented as shown in Figure 4.5. An alternate



implementation is to use an extended primitive as shown in Figure 4.6. This gives the
same information and either can be used. The extended Decision Primitive represents the
program statement If-Then-Else If-Else If-....-Else.

The advantage of the graph is clarity in presenting conditions, output and exactly
where the paths diverge and converge.

4.3.5 Constant Primitive

Constants play a unique role in a data flow graph. they can have names and type,
similar to variables but are not to be treated as variables. In a program, constants often
appear as variables and can only be sorted out by referring to an input data list. To avoid
placing constants on the left of a data flow graph and treating them as variables it is best
to use the letter C as a prefix to identify all constants. The second letter defines the type
using the letters F,D,I ,LB, and S which have the same definitions as in Section 4.3.1.
The symbols are defined in Table 4.5.

On a data flow graph all constants are listed in a table. An example table is
shown as Table 4.6. The Constant Definition Table gives all constants by name, which
includes type. The values are given in column 2. Any additional information is given in
column 3. This column would explain constants of the CB or CS type.

By identifying constants in this way, the task of data dependency is made easier.
Variables are automatically sorted out and constants are not confused as variables which
must be computed.

4.3.6 Delay Primitive

In simulation programming the delay operator is crucially important. This
operator is defined by the symbol and operation shown in Figure 4.7. The output b is not
defined at k=O unless the initial condition IC = b(O) is specified. Thus every delay
operator must have an associated I.C. In a computer program this

b(k) = Z- Ib(k+1)

Figure 4.7 Unit Delay Operator



IF (T > T I ) Then

A
IF (T>T3 ) Then

E
Else F (T>T4 ) Then

F
Else IF (T>T5 )Then

G
Else

H
End IF

Else
B
F(T>T2 ) Then

C
Else

D
EndiEF

End IF

Figure 4.2. Complex Decision Logic
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I Figure \Primitive Implementation of Figure



EF (T > Tl)Then
A

Else IF (T>T2) Then
B

Else IF(T>T3) Then
C

Else IF (T>T4) Then
D

Else
E

End EF

Figure 4.4. Decision Tree



Figure 4.S. Primitive Implementation of Figure 4.4

T4
T3
T2

T
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Table 4.5. Constant Primitive

DEFINITION SYMBOL VALUE

Floating Point N 32-bit Floating Point Number

Constant C) NM

Floating Point 64-bit Floating Point Number

Constant C) NM

Integer 16-bit Integer

Constant

Long Integer , -NA 32-bit Integer

Constant

Logical N-bit Logical Constant

Constant C7 NM

Special N-bit Special Type

Constant Constant



Table 4.6. Constant Definition Table

NAME (1) VALUE (2) INFORMATION (3)

(1) Name is taken from the flow graph.

(2) Value is the current simulation number

(3) Special information relates number of bits and other data for CB and CS type constants.



I shows up in code as Varl(k+l) = Varl(k) + f(Varl(k), Var2(k)) where k refers to the
previous time step and (k+l) the current time step. This can be implemented as shown in
Figure 4.8

Va r(k)i' T -
Var 2(k) fa (k1

3 IFigure 4.8 Implementation of Delayed Variable Calculation

In order to compute Var l(k+l) it is necessary to have an initial condition Var 1(0) and
Var 2(0). Var 2(k) is generated in a similar manner by another equation. There are two
ways this can happen as shown in Figure 4.9

5 Start Cycle (k+l) Start Cycle (k+1)

Varl(k+l)=Varl {k)+f(Varl(k),Var2(k)) Var2(k+l)=Var2(k)+g(Var2(k), Var3(k))

Var2(k+l) = Var2(k) + g(Var2(k), Var3(k)) Varl(k+l) = Varl(k) + f(Varl(k), Var2(k))

End Cycle End Cycle

Figure 4.9 Programming Sequence For Cycle (k+1)

Both versions shown in Figure 4.9 are implemented as shown in Figure 4.10. Because all
(k+l) values are dependent on (k) values and no (k+l) values, the two functions Var
l(k+l) and Var 2(k+1) can be solved independently and in parallel.

Many programs are written without regard to the cycle number. If this is done, all the (k)3 and (k+l) values are removed from Figure 4.9. The implementation for the two codes is
then different. The version on the left in Figure 3 (Var 1 precedes Var 2) is implemented
exactly as shown in Figure 4.10. The version on the right in Figure 3(Var 2 precedes Var
1) is implemented as shown in Figure 4.11 (with appropriate assumptions on Var 3). In
Figure 4.11 the two functions become dependent and must be computed sequentially; Var
3 followed by Var 2 followed by Var 1.

In extracting parallelism within a sequential program it is necessary to distinguish
between these two code variations. If "time stamps" are available as in Figure 4.9, it is
relatively easy to trace the paths which produce Var I(k+l) and Var 2 (k+1). This would
then lead to a data a flow graph as shown in Figure 4.10 or Figure 4.11. In order to do
this it is helpful to convert the code to a "time stamped" format. This can be done by
entering the code at the beginning of cycle k+l. All variables on the left hand side of the
replacement sign will become Var(k+l). Variables on the right hand side of the
replacement operator will become Var(k) and in some cases Var (k+l). Whenever a



variable on the R.H.S. appears after a similar variable on the L.H.S. it becomes
Var(k+l). If the variable appears on the R.H.S. before the same variable appears on the
L.H.S. it will be Var(k). When in the same line as the variable on the L.H.S., the
variable on the R.H.S. is Var (k).

Calls to subroutines and functions must also be observed carefully. Variables
passed to the subroutine will be Var (k+l) if the variable has appeared on the L.H.S prior
to the calling statement. Otherwise the variable will be Var (k). The returned variables
are analyzed within the subroutine in the same manner as the primary program.
However, once they are "time stamped" it becomes easier to couple them into succeeding
routines.

Constants are another item which need identification. If not identified as such,
the data flow diagram treats them as variables. This increases the difficulty of the search
procedure and also requires "time stamping". It is essential to use "C" as a prefix for
constants. All labels related to constants are then readily identifiable and the data flow
graph is much clearer. Also the list of variables would be reduced to true variables.

Initial conditions are identified by the presence of delay blocks in the data flow
graph. Every variable which is an input to a delay block requires an initial condition.
The delay blocks can be used to generate an appropriate list of variables and their initial
conditions. This is one of the areas most subject to error. Many compilers will initialize
variables to zero, but others do not. Good simulation practice requires a list of variables
which requires initial conditions and their respective values.

After the sequential code is converted using these techniques, each major section
can be partitioned with input and output variables. In this sense a section becomes a
subroutine call, though it is not written as such. The output variables for each section
can be determined from a data flow graph which traces the computation back to the set of
input variables. The "time stamp" on all required variables indicates immediately those
variables which are independent and those which must wait on other computations.
There are three cases which are illustrated in Figure 4.12. In Figure 4.12(a)
computations for V4(k) can begin at the beginning of cycle (k+1). This block only needs
to receive Vl(k), V2(k) and V3(k) for computation to begin. These values will be output
during cycle (k).

Vl(k + 1)

V2(k) f( g V4(k+)

V3(k)

Figure 4.12(a) Completely Independent Block



V1(k + 1) >
V2(k) "7 f( ) g () V4(k + I)

V3(k)

Figure 4.12(b) Completely Dependent Block

V I(k)

V2(k) f( ) g > V4(k+ 1)

V3(k + 1)

Figure 4.12(c) Partially Dependent Block

Figure 4.12. Data Flow Dependency Conditions

In Figure 4.12(b) the variable Vl(k+l) must be computed before the function f0
can start. Hence the entire computation for V4(k+l) must wait for Vl(k+l). After
Vl(k+l) is calculated all of the computations for V4(k+l) can proceed. If the processor
calculating V1(k+l) has no additional duties, the computation of V4(k+l) can be
assigned to that processor. Otherwise, the value VI(k+l) can be transferred to another
processor and V4(k+l) is computed in parallel with other functions.

Figure 4.12(c) illustrates a partially dependent graph. The function f0 can begin
at the start of cycle (k+l). The output from fO and V3(k+l) are needed for go. When
V3(k+l) is completed, it can be transferred to the processor computing go. When the
output of fO and V3(k+l) are both available the computation of go proceeds. This
permits parallel processing wherein fO is computed in parallel with V3(k+l). The
function gO may also be computed in parallel with other blocks.



IC Var 1 (0)

Var I (k)

Var I (k+l)
f

Var 2

Var 2 (k)

Var 2 (k + 1)
Var3(k)Lg :

Figure 4.10. Implementation of Figure 3 (left)

c Var2(0)) 
IC Varl 0

Var 3 9 V aa rr 22 f -Varr I

Figure4.1 1 - Implementation of Figure 3 (right)



There are three cases which are illustrated in Figure 4.12. In Figure 4.12(a)

computations for V4(k) can begin at the beginning of cycle (k+ 1). This block only needs

to receive V 1(k), V2(k) and V3(k) for computation to begin. These values will be output

during cycle (k).

V1(k + 1)

V2(k) f() g > V4(k+ 1)

V3(k)

Figure 4.12(a) Completely Independent Block

V1(k + 1) -

V2(k) f() go> V4(k+ 1)

V3(k)

Figure 4.12(b) Completely Dependent Block

V I1(k) -

V2(k) f() go V4(k+1)

V3(k + 1)

Figure 4.12(c) Partially Dependent Block

Figure 4.12. Data Flow Dependency Conditions



S. PARALLEL EXOSIM SIMULATION

5.1 Introduction

An Exoatomospheric Kinetic Energy Weapons Interceptor Simulation was
initiated by BDM Corp. and completed by Coleman Research Corporation. The final
report, EXOSIM V2.0, was delivered to the U.S. Army Strategic Defense Command,
October 15, 1989 under contract number _ . This simulation, written in
FORTRAN, was developed to run on a serial computer such as a VAX. The objective at
Georgia Tech is to convert the simulation to Ada and to restructure it in a parallel format
for execution on the Georgia Tech Parallel Function Processor. A second objective is to
preserve the functional nature of the simulation so that changes can be easily
incorporated into the executing code.

An analysis of the serial code revealed several problem areas which make the

conversion more difficult. These are:

1. Double Precision Variables.

2. Dependent Partitions.

3. Event driven code.

4. System States difficult to identify.

5. Inadequate descriptions of system models.

Two approaches were selected for the conversion. The first, and most direct, was to
examine the code, extract the physics, and re-write the simulation. This work is
underway. The second approach was initiated by Dynetics Inc. Dynetics removed the
event driven structure, produced an "equivalent unclassified version", and identified
partitions which could be run in parallel. Dynetics worked with EXOSIM vl.0 since
v2.0 was not available when they began work. They were only able to complete the
Boost phase before funds were exhausted. This code was delivered to Georgia Tech and
is known as EXOSIM Boost2.

Boost 2 incorporates virtually all of the EXOSIM vl.0 code. Extending Boost 2
to include the KV only requires the addition of the KV autopilot, ACS thruster, VCS
thruster and the seeker code. With the exception of the seeker code, these new
components are similar to other modules which are used for the boost phase. Georgia
Tech has worked with Boost 2, developing conversion techniques and a methodology.
Once Boost 2 is converted, the KV phase will be added. The remainder of this section
discusses the methodology developed for the Boost 2 conversion effort.

The Boost 2 code consists of five partitions which have been designed to operate in
parallel. Parallel operation was verified by running the partitions on a serial computer in
various sequences. The sequence 1,2,3,4,5 is considered the baseline. Other variations



in the order produces certain errors in the code and generates slight errors in the ALT
(alititude) variable. If the error was under 2000 feet out of 229,830 feet it was
considered reasonable. Errors are caused because some variables are delayed by one
cycle from their order when executed in the baseline sequence. This causes slight
variations in these variables which ripple through all variables.

5.2 Timing Analysis

In EXOSIM there are five partitions for the BOOST2 program. This code flies
the KEW vehicle from launch through boost phase 1 to the end of boost phase 2. Most
of the subroutines are active during both phases, but a number are only active in one
flight phase.

A timing routine was written to determine execution delay for each partition. The

values were accumulated over 1000 simulation clock periods (Ts = 0.001 seconds).

From these timing results maximum and minimum values for each partition, for each
flight phase, were selected and are listed in Table 5.1. Two things are obvious from the
iesults; (1) the difference between the maximum and minimum for a given partition is
relatively small, and (2) the differences between the maxima across the partitions is quite
large. This shows that the code within a partition does not vary very much (although the
averaging smoothed the results) but the computational balance is poor. Hence, Table 5.1
says to focus on Partition 1.

The timing program was used again within Partition I to assess the distribution of
compute time by subroutines. The results are shown in Table 5.2. This Table indicates
ATMOS and AERO as the subroutines which require the most computation. However,
rather than attacking these two subroutines, which could be done, with positive results, it
is best to look at Partition 1 as a whole and assess other possibilities at the same time.
For example, as written, Partition 1 has a total of _ double precision variables which
must be transferred into or out of the processor each cycle. The transfer time for these
variables is an enormous problem. Therefore, any parallel partition should address
variable transfer as well as compute time.

Note: All timing information was taken from the Intel iSBC 286/12 processor.
Values for the iSBC 386/12 would be reduced by a factor of 4 (approximately). The
iSBC 486/12 would reduce the values by a factor of 16 (approximately).

5.3 Code Conversion
Figure 5.1 shows the result of converting the Partition I code into a data flow

graph. Variables are transferred in on the left at time tn. Computation proceeds in a left

to right flow with variables generated for time tn+1* These are transferred between the

partitions and the cycle is repeated.



I

The data flow graph makes obvious the enormous amount of parallelism which is
present. Instead of one processor, ten or more could be used to start the computation for
Partition 1. All that is necessary are the variables shown to begin computation along one
of the input paths. The availability of these variables depends on the sending partition
and will be addressed later.

The second feature of the graph is data flow dependence which sets the longest
chain in the graph. At this point it can't be concluded the longest chain is the longest in
time, since blocks are not equal in time delay, but it does give an idea of how the
analysis should proceed. Furthermore, the timing analysis has already shown that
ATMOS and AERO are dominant time delays in Partition 1 and both are in the longest
chain. Hence, attention must now turn to these two subroutines.

A few additional comments are needed on the main partition. In the original
version all variables were declared as double precision. This is an exorbitant waste of
computing effort and in many cases fails to model the system blocks appropriately. In
Partition 1 the only case for double precision is the generation of position variables XYZ
and variations thereof. All other variables should be handled as 32-bit floating point
values or integers. This accuracy is more than sufficient for ATMOS, AERO, INTEG
(except for XYZ)etc. To test the system sensitivity, all partition variables except XYZ
and its variation were changed to single precision. The output values were compared to
those obtained for the double precision case. The single precision values were subtracted
from the double precision values to create an error file. The errors are given in Table 6.

5.4 Conversion of Subroutines ATMOS and AERO

The two subroutines which require significant amounts of compute time are
ATMOS and AERO. ATMOS is used to generate atmospheric values as a function of
altitude. The subroutine, shown as a flow graph in Figure 5.2, exhibits six table look-ups
which can all be executed in parallel. This in itself represents a 6x speedup over the
previous method. By using single precision instead of double precision, an additional 2x
can be gained giving an expected 12x performance gain for this segment. In order to do
this, the appropriate variables must be routed to the processors containing the tables. The
table look-up function can be implemented in a variety of ways (as discussed in Section
5.5). indicated in the flow graph, but it is safe to assume it will execute faster than the
original. If the variables are sent from the appropriate processors, a table look-up
processor is only required to execute the following pseudo code;

Receive (ALT , 2)

Receive (MACH ,2)

Compute ( )

Send (PRESS,2)



Tabe. Max - Min Partition Timing Values

Boost Phase 1

Partition Maximum Minimum

3

Boost Phase 2

I 2

* 3

4

I 5 _ _ _



Table 2. Max - Min Partition Timing 1 Values

Boost Phase 1

Partition Maximum Minimum

1

2

3

4

5

6

7

8

Boost Phase 2

1

2

3

4

5

6

7

8
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I In the Receive statement a variable such as ALT is removed form the input
buffer. The integer 2 indicates the variable consists of two, 16-bit parts. It has to be
known the two parts constitute a 32-bit floating point number and not a 32-bit integer.
The variable ALT will be assembled as a floating point number for computing the
required output. The compute statement represents a procedure to obtain the output,3 given the input values. The Send statement, outputs the variable PRESS to the output
buffer. Since the variable is a 32-bit floating point number it is output as two, 16-bit
parts. Each part will be transmitted over the crossbar to one or more destination
processors.

5.5 Tables

Look-up tables are used in EXOSIM for atmospheric properties (in ATMOS),
missile properties (in MASSPR) and aerodynamic properties (in AERO). Most tables are
functions of a single variable although three (CN, CA, XCP) are functions of two
variables. Sample plots of look-up tables from BOOST2 are given in Appendix A.

A nonlinear function of one variable is implemented in a table using non-uniform
spacing on the x-axis. Linear interpolation is used to obtain the value F(x) by

Del x-xk (5.1)
Xk+l-Xk

3 F(x)=(Del x (F(xk+1) - F(xk)) (5.2)

A linear search or a binary search is used to locate the values xk+1 and xk.

A much more efficient method is to use more points (requiring more memory)
and divide the x-axis into segments with uniform spacing. For example the range x = [0,
100] could be covered by [0, 1, 0.1], [1, 10, 1], [10, 100, 10]. Each of these triplets gives
the range of x and the delta x. To compute the function e- x on [0, 100] the function
values are shown in Table 5.3. Two methods can than be used to obtain F(x).

5.5.1 Direct Look-Up

I If the table is sufficiently dense there is little to be gained by linear interpolation.
Assuming this is sufficient the algorithm is shown in Figure 5.3:

I
I
I
I
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For the exponential function in Table 5.3, the errors are largest over [0,0.1], [1,21, and
,[10, 20]. The maximum error in each case is,

e rrmax = e- 0  -e 0 .0 5 = 1 - 0.9512294 =.04877

i errmax = e 1 - e "1. 05 = 0.3678 - 0.2231 = .01446

e rrmax = e 1 0 - e1 5 =.000045-.0000003 =.000045

This shows the table should be extended further in the 0.1 range before changing

I

to a delta X of 1.0. However, the accuracy can be controlled to any degree by using
more points. As shown inTable 1, 30 points is not a very large table. Three hundred
points is still reasonable and could reduce the errors considerably. Use [0,1,0.01),

[1,4,0.03] ,[4,10,0.06], and [10,100,10] as the segments. The maximum errors are

3errmax = e-0  e0. 0 = 1 - 0.9950 = .00498.

Uerrmax = e-I e-10 15 = 0.3676 - 0.3624 = .00547.

effmax = e-4 - e-.3= 0.0 183 - 0.0177 = .00054.



Table 5.3 Segmented Function e-X

0
* 0.1

0.2
0.33 0.4
0.5
0.63 0.7
0.8
0.91 1.0

2.0
3.0
4.0
5.0I 6.0
7.0
8.0
9.0
10.0

20.0
30.01 40.0
50.0
60.0
70.0£ 80.090.
10.



This is about 5/1000 or 8 bits of accuracy, worst case.

5.5.2 Interpolation

By using segments on the X-axis the previous search to find Xk and Xk+1 can be

used. The computation for F(x) is enhanced by using linear interpolation. Using the
previous algorithm, the computation of Y must be changed to:

Y = XF * (Y(Xk+l) - Y(Xk)) + Y(Xk). (5.3)

In this case a correction is added to compensate for the displacement of X relative

to Xk. For the previous case, using the midpoints as examples,

XF=o.05,

XF = 0.5, and

XF=5.

For these three case.,

Y = 0.05 Y(O. 1) + 0.95Y(0)

Y2 = 0.5 Y(2) + 0.5 Y(1)

Y3 = 5 Y(20) - 4 Y(10)

Since the exact values are

Ylex = Y(O.05)

Y2ex = Y(1.5)

Y3ex = Y( 5)

the errors in each case are

El = Ylex - Y1 = Y(0.05) - 0.05Y(O. l) - 0.95Y(O) =

E2 = Y2ex - Y2 = Y(1.5) - 0.5Y(2) -0.5Y(1) =

E3 = Y3ex - Y3 = Y(15) - 5Y(20) + 4Y(10) =
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5.6 Parallel Versions of EXOSIM

5.6.1 Version 1.0

The BOOST 2 code was analyzed to determine variable transfers and delayed
variables. Figure 5.4 and Table 5.4 are the results. From Figure 5.4, a three processor
implementation was constructed. The timing for each processor is roughly indicated by
the left-right position in Figure 5.4. This implementation exactly matches the baseline.
The baseline executes at 64:1. Figure 5.4 executes at 42:1. The final altitude is 229830.

5.6.2 Version 1.1

The Mass Products block and the ATMOS block within Partition 1 were put on
separate processors. These two blocks contain several, one variable look-up tables.
These are run in parallel without introducing any variable delays.

The ATMOS subroutine requires ALT for the tables PRESS, RHO, VSND,
SHEAR, WINDIR and VWIND. Altitude is output as early as possible from Partition 1
to six processors running these subroutines. The outputs are returned to the Patittion 1
processor or to a WINDS processor.

The WINDS processor inputs XYZ, XYZD, and CIM. This enables it to generate
LAT and LONG. The answers are equal to the Baseline. Execution time is 32: 1.

5.6.3 Version 2.0

IA three processor version based on Figure 5.4 was implemented wherein
Partitions 1,2 and 3 are all started at t = 0 with initial conditions. This implies that Table
5.4 would contain all delayed variables. The execution time was 34: 1. The final altitude
was 228022.

5.6.4 Version 2.1

The variables on v2.0 were all exchanged at the beginning of the cycle. This
causes the transfers to be done in series with the computation. The longest execution
time (Partition 1 ) determines when transfers will start. Execution is started after all
transfers are complete.

To introduce parallel operation in computation and transfer, it is necessary to
begin processing with initial conditions set for t=0. As each partition completes a
variable which is to be transferred, a SEND is executed immediately. Variables are
grouped for transfer by estimating when they will be ready. This is the most difficult
part, since timing information at this level, is not available. However, the timer on each
processor can be used to determine the completion time of each of the variables from the
start of the cycle until the SEND is executed. Since the Partition division is not
complete, this analysis is delayed until later.



The results match those for v2.0. The execution time is

5.6.5 Version 3.0

The errors present in Version 2.0 are due to delays. By estimating these variables
it should be possible to reduce the errors and force v2.0 to conform to vl.0. Rather than
extrapolate all the variables at once QA, MACH, PRESS and CG were chosen first.
These variables were examined using vl.0. A third order extrapolator was used to
generate Yk+l from Yk' Yk-1' Yk-2 and Yk-3" When these were tried the execution

time became : 1, with an altitude of

5.6.6 Version 3.1

Figure 5.4 represents the minimal parallel system. By separating partitions 3,4
and 5 and extracting the target subroutine as partition 6, a six processor parallel
simulation results as shown in Figure 5.5. The variables which are passed between
processors are shown in Figure 5.5 and Table 5.5. All variables passed between
partitions are delayed. THis caused large errors in altitude and was not considered
adequate to pursue.

5.6.7 Version 3.2

Partition 2 is split and placed on two processors. One processor will contain
subroutine NCU and BTHRST. The other will contain FRACS and FRCTHST. These
will be designated Partition 21 and Partition 22. Partition 3 will be split into three
processors. One will contain ACCEL, the second GYRO and the third IMUPRO. These
will be designated P31, P32, and P33. Partitons 4 and 5 remain on P33.

5.6.8 Version 4.0

Since double precision variables generate a real problem, it was decided to only
transfer the top 32 bits of some double precision variables. Thus PRESS, which is
computed and transferred as a 64-bit variable, is still computed as 64-bits, but is
transferred as the 32 most significant bits. On the receive end, the variable is input as
two 16-bit parts of a double precision number. The other two 16-bit parts are static and
never change. (These could be set to zero in the initial program). The result of
changing, a variable in this manner is quite minimal. This change leaves one sign bit,
eleven exponent bits, one hidden mantissa bit and 20 mantissa bits. The effect of

truncating the lower 32-bits introduces an error of less than 10- 6 . This can be seen by
letting V1 be a 64-bit value and V2 be the upper 32-bits of V 1. The error is then defined

by,

V1 = 1.M 1 x 2 E



FIgure 5.4 Three Processor Implementation - Version 1.0
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TABLE 5.4. PARALLEL EXOSIM V1.0 VARIABLE MAPI
PARTITIONU

VARIABLE 1 2 3 4 5

I MDOTF DR S
MDOTI DR S

I FRCX DR S
FRCY DR S
FRCZ DR S

I MRCX,YZ DR S
FXT, FYT, FZT DR S
MXT, MYT, MZT DR S3 P,Q,R S R
UD, VD WD S R
PD, QD, RD S R
CG S R R
GR S R
ALT S RU CGEST S R
IT S R
VRWM S R
SR, SQ DR S
CMMD DR S
DLPC, DLYC DR S
PM DR S
MDLTFR DR S
MALPHA DR S
QA S R
MACH S RI PRESS S R

I
I
a
I
.3



-- V2  -M 2 x 2E

IV1 -V2  (1.M 1- L.M2) x 2E

< (1 .M2 + M3 - 1.M2) x 2E

I (M3) x 2E

<2 20 x 2E

The relative error is

IVI -V21 V22 0 i

IV 1 1.M 1  2-20.

IThis accuracy is sufficient for most simulation variables. The exceptions are position
coordinates which generate altitude requiring the subtraction of two large numbers.
Also, time in EXOSIM is calculated using a double precision technique to ensure
accurate alignment of the sample points. A number of if statements contain test
constants that require double precision for accurate definition. This timing structure can
be converted to single precision, but will require care to examine all the cases which
exist. At this point time and all associated variables are being left in "D" format.

The number of variables to be transferred is shown in Table 5.6. This is a three
processor implementation of the five partitions. Each partition (processor) requires the
number of input/output transfers shown in the table. Note that the total for Partition 1 is
45. If each is transferred as a 64-bit number this will require 180 crossbar cycles for
Partition 1 alone. At one microsecond per transfer this will consume 0.18 milliseconds
or approximately 20% of the simulation cycle time. There are two ways to reduce this.
The first is to transfer 32-bit values instead of 64-bit values. This has the potential to
divide the number by 2. A second technique is to divide the partitions and reduce the
number of variables for any one processor. variables are now delayed.
When this configuration was executed, the time was - and the achieved altitude was

. By implementing prediction on the variables ( ), the altitude was
increased to _ , with an increase of execution time to .



Figure 5.5 Six Processor Implementation - Version 3.1



TABLE 5.5. PARALLEL EXOSIM v3.0 VARIABLE MAP

PARTITION

VARIABLE 1 2 3 4 5 6

MDOTF DR S
MDOT" DR S

FRCX,Y,Z (3) DR S
MRCX,YZ (3) DR S

FXTFYT,FZT (3) DR S
MXT,MYT,MZT (3) DR S

P,Q,R (3) S DR
PD,QD,RD (3) S DR

UD,VD,WD (3) S DR
CG (3) S DR DR DR
GR (3) S DR

ALT S DR
CGEST (3) S DR

II (3) S DR
VRWM (3) S
MACH S DR
PRESS S DR

QA S DR
CMMD (2) S DR S

DLPL,DLYC (2) DR S
MALPHA DR S
MDLTFR DR S

PM (3) DR S
SQSR (2) DR S DR

DELPH1,PSI,THT (3) S DR
DELU,V,W S DR

AT (3) S DR
MVR,MVS (2) S DR

TIZM (9) S DR
UVS (3) S DR
RTIC S
VTIC S
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TABLE5.6. Transfers For Figure 5.4

Partition TRAN IN TRAN OUT

1 14 28

2 17 14

3 12 0

4 3 2

5 10 9

Total 59 56



3 TO PARTITION

11 2 3 4 5 6

IF 1 6 12 3 10 0
R

M2 14 0 0 0 0

A 3 0 00 0

R3T 4 0 2 0 1

3 T0
150 9 00 0

03N 6 0 0 000>-

3Figure 1 I Processor Transfer Requirements for Figure B.
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Table XI. Crossbar Schedule for Figure Xm

1-2(6) 4-5(6)

T3 R 1-3(12) 5-2(6)
A A
R N
A S
L F 1 ! 4 (3) 5-2(3)
L 4 (2)

L S 1-5(10) 34(6)

2-1(14) 4-5(13)
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I Figure 5.6 is a matrix of the transfers from each processor to all other processors.
This is useful to determine a crossbar transfer pattern. For example row 1 shows all the
sends executed by processor 1, whole column 1 shows all the receives executed by
processor 1. The total for each processor is important since it sets the absolute minimum
number of crossbar cycles. The totals for each processor are;' 1:45, 2:31, 3:18, 4:30, and
5:38. Therefore, processor 1 must transfer 45 variables (4, 16-bit words per transfer) and
sets the minimum number of transfer cycles. By programming these transfers first, the
others can be forced to fit. Therefore schedule 1 to 2 (a), 1 to 3(12), 1 to 4(3), 1 to 500),
and 2 to 1(14). Since processor 5 has the next highest number of cycles, it is best to try
and fit these cycles in next. Table 5.7 shows all the cycles for processor 1 in the first
column and those for processor 5 in the second column (with the exception of 1-5).3I These can be transferred in parallel. The remaining cycles are shown in column 3. This
schedule meets the minimum number and is optimal in that sense.

There is another consideration, however, the variables may be computed in an
entirely different order. If transfers are to be overlapped with computation for maximum
overlap , it is necessary to factor into Table 5.7 timing information which indicates when
each of the variables to be transf-trred by a given processor will be available. Given this
information, Table 5.7 can be re-ordered to transfer the variables in the fastest possible
manner. This may lead to some transfer conflicts and force extra cycles in the schedule.
This information is not being obtained at this point, since more divisions are being
sought.

3 5.6.9 Parallel Versions of Partition 1

Within Partition 1 are two subroutines which each contain six single variable
table look-ups. These tables are driven by ALT for the ATMOS subroutine and by
MASS for the MASSPR subroutine. These can be done in parallel with Partition I by
setting up the tables on individual processors as shown in Figure 5.7. Partition 1 must
SEND ALT and MASS to the appropriate processors. Values are returned from the
processors to Partition 1 to continue execution.

3 Since CG = [CG(1), CG(2), CG( 3)]T = CGEST, these values can be sent to other
partitions at the same time they are sent to Partition 1. The ATMOS subroutine contains
six table look-ups and a WINDS subroutine. It is necessary to send XYZ, XYZD and

CIM to WINDS in order to calculate Latitude and Longitude. Values from the tables are

sent back to WINDS to complete the calculation for VRWM and MVRWM.

Partition 1 can be further divided, as shown in Figure 5.8, by placing AERO on

the WINDS processor. Since VRWM and MVRWM only go to the AERO module, this

avoids transfers for these two variables. AERO can be divided by placing the four table

look-up functions on four processors and directing the results back to the WINDS/AERO

processor. After the forces and moments are computed they are passed to MISSIL.



In Figure 5.9, AERO is divided to avoid the transfers MXA, MYA and MZA.

These are computed on AERO(2) from the force values transferred from AERO(1). The

MISSIL routine in Figure 5.8 has been split into two independent routines. The variables

PD,QD, and RD are delayed variables generated by MISSIL (1). These are passed to

MISSIL (2) which computes PHI, THT, PSI and CIM. Figure 5.9 represents the state of

Partiton 1 as of July 15, 1990. Additional parallelism exiss in MISSIL but the most
intensive computation now occurrs in WINDS. The plan is to convert this to replace the

iSBC 286/12 processor executing this code and replace it with an FPP processor. This

will require the use of single precision code until the double precision compiler is ready.
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